
 www.vmcd.org

MySQL OS layer performance optimization Ten Tips

This article is mainly for some performance optimizations of mysql database on system layer.

Louis liu (vmcd)

DA@yihaodian

SHOUG Member

Twitter:@vmcd_gg

Ylouis83@gmail.com

http://www.vmcd.org ,http://www.yhddba.com

mailto:Ylouis83@gmail.com
http://www.vmcd.org/

 www.vmcd.org

One: Disk tips

Normally we use SATA or SAS as database storage and sometimes the IOPS is enough. Today as High-growth businesses database becomes

bigger and bigger and higher IOPS is require for OLTP system. (we first introduce SSD for some database system architect and now even PCIe

like LSI or FIO for database storage)

Some tips for using SSD and PCIe.

1. Regular SAS and SATA HDD : over 200 IOPS per driver, but SSD : over 2000+ IOPS (the new Intel SSD test benchmark even more than 10000

IOPS for random read and write), In our system design, we often use four SSD disks creating four database directories to store mysql data

and we put sequence write file like binary log, db-logfile and some sequential binary file on SAS HDD because SSD is not good for sequential

write. And we can even put some history and arch data on HDD disk as SAS HDD is cheaper than SSD and these data is not often used for

reading.(Do H/W raid for HDD to get higher R/W IOPS)

 www.vmcd.org

2. We don’t make RAID (5/10/1) for SSD .Because of the lower write performance (we put most of reading operation on slave side. Although

raid0 or raid10 can get better write performance but you need several SSDs to get it and that’s not cheap!) . We use NO-RAID architect for

mysql database and the HA design was done on OS layer (like we use M-S MHA DRBD M-M) to prevent mysql database single node of

failure (for some core database we even create backup slave to do cold backup per day using VTL) and for PCIe you need to use S/W raid

instead of H/W raid.

 www.vmcd.org

 www.vmcd.org

3. SSD is not enough, memory is more important. With mysql 5.5 multi buffer pool was introduced so having a large buffer pool will get a nice

IO performance. So don’t save memory (that’s very cheap) we often use 128GB memory machine to run mysql database and even some

core system the memory will be 256GB. As you know for mysql system even you have using SSD for storage, swap is bad, so give a large

memory is very important.

4. In our system , SSD is mainly for mysql database and PCIe is often given for oracle db . PCIe is very expensive but even better IOPS than SSD.

We use large numbers of FIO cards to support oracle OLTP system. In our test - sequential write is also poor on PCIe (like oracle logfile ,

 www.vmcd.org

oracle archive log) (In pic-1-1 test by Harrison, we must change log file block size to get better performance for sequential write on

Flash-SSD)

Pic-1-1

So remember that using large memory for important system (cheaper),using SSD for better IO performance (expensive) and do some data

integration (history arch data on HDD drivers or even put different table on different disk drivers).

If you want more information for SSD and PCIe check this PDF

http://www.slideshare.net/ylouis83/ssd-gc-review

http://www.slideshare.net/ylouis83/ssd-gc-review

 www.vmcd.org

Two: DB version tips

 This is very important for some small company. Many of them even use very old mysql version so there will be a very big problem for giving a

better performance they want. As you now, too old mysql version have many problems (lower performance on SMP and large memory system)

and even some lock and mutex problems. From mysql 5.1 to mysql 5.5 we got performance promotion a lot and even in 5.6 and 5.7 version

performance of benchmark is still more excellent (visit Dimitrik blog for more information)

http://dimitrik.free.fr/blog/archives/2013/11/mysql-performance-over-1m-qps-with-innodb-memcached-plugin-in-mysql-57.html

http://dimitrik.free.fr/blog/archives/2013/11/mysql-performance-over-1m-qps-with-innodb-memcached-plugin-in-mysql-57.html

 www.vmcd.org

Today we use new Nehalem and Sandy bridge CPU architect (I don’t think using an very old machine with even linux4.x to run database system

is a good choice) so please upgrade your DB version (5.1 to 5.5 is very important even 5.6 for better performance and a lot of new feature to

help design your DB system)

Tips: look at these pictures you see actual CPU MHZ is not the value I have marked red, these CPUs are in saving mode so machine’s full power

will not be played out. (but in these two machines saving mode maybe enough as total 160 and 64 lcpu)

 www.vmcd.org

Three: avoid Swap in your DB system

 As I said before in this article, memory is very cheap now so don’t save your money on memory. If your database system has a lot of swap I

can make sure your database is very slow. And how to determine the size of buffer pool ? Just keep “hot data” should be cached in memory ,

that’s why we say if you system has many FTS query your system must very slow.

Swap setting tips

1. do not set swap size to zero

If you set swap size to zero OOM kill may happen (maybe kill mysqld for free memory for system)

We can set “oom_kill_allocating_task” , “/proc/&PID/oom_adj” and “vm.min_free_kbytes” to avoid OOM killer but set swap size to zero is still

very dangerous.

 www.vmcd.org

2. set “vm.swappiness=0”

 Set this parameter to zero to ensure mysql can hold hot page for long time

3. Some other drivers can cause swap

 Be careful when using some Native drivers like fusion-IO (sometimes when disk recovering system memory should be used) and design your

database memory allocation (not use fully memory like 128GB OS memory: 100GB for buffer pool) monitor your system all the time if swap

happens you must check your application to avoid OOM killer.

 www.vmcd.org

Four : Memory allocation tips:

 For fine mysql design we consider to use new memory allocator instead of default.

See below detail test by Alexey Stroganov

 www.vmcd.org

memory allocator mysqld RSS size grow(kbytes) mysqld VSZ size grow(kbytes)

lockless 6.966.736 105.780.880

jemalloc-2.2.5 214.408 3.706.880

jemalloc-3.0 216.084 5.804.032

tcmalloc 456.028 514.544

glibc-2.13-new-malloc 210.120 232.624

glibc-2.13-old-malloc 253.568 1.006.204

glibc-2.12.1-system 162.952 215.064

glibc-2.15-new-malloc 5.106.124 261.636

Facebook testing jemalloc blog:

http://www.facebook.com/notes/mysql-at-facebook/using-jemalloc-to-fix-a-performance-problem/10150494400690933

http://www.reddit.com/r/programming/comments/18zija/github_got_30_better_performance_using_tcmalloc/

http://www.facebook.com/notes/mysql-at-facebook/using-jemalloc-to-fix-a-performance-problem/10150494400690933
http://www.reddit.com/r/programming/comments/18zija/github_got_30_better_performance_using_tcmalloc/

 www.vmcd.org

In our future planning, we’re still thinking using tcmalloc for the first choice of memory allocator (we consider to use tcmalloc instead of

 www.vmcd.org

default on new mysql 5.6 database)

Five : file system options and IO management

For file system mount options (ext3 ext4 xfs and so on) disable barrier is a good choice.

Like : “mount -o barrier=0” on ext3

Show mount options :

[root@db-3-27 ~]$ mount | grep 'data'

/dev/sdb1 on /data type ext4 (rw,noatime,nodiratime,nobarrier)

MS_NOATIME

 Do not update access times for (all types of) files on this filesystem.

 www.vmcd.org

MS_NODIRATIME

 Do not update access times for directories on this file system.

 This flag provides a subset of the functionality provided by

 MS_NOATIME; that is, MS_NOATIME implies MS_NODIRATIME.

void touch_atime(struct vfsmount *mnt, struct dentry *dentry)

{

 /* ... */

 if (inode->i_flags & S_NOATIME)

 return;

 if (IS_NOATIME(inode))

 return;

 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))

 return;

noatime is a superset of nodiratime

The main ones are replacing atime/relatime with noatime. This causes the FS to not write read-times to a file when read. Think about it.

Enable BBWC on RAID card is important .write cache will give a huge promotion on performance, but write cache must be protected by battery

so battery’s discharge and recharge will be problem, in that time BBWC will set cache policy from write back to write through so at this time db

system’s IO will be slow. This problem was resolved by Flash like USB.—FBWC (Flash-Based Write Cache) copy data in cache to flash and then

rewrite to HDD.

 www.vmcd.org

For battery recharge problem we have some solutions:

Discharge and recharge manual you can do these in midnight.

Set cache policy to “force write back” but you may lost data.

For RAID card policy we can disable read cache (direct read) to let write cache use total cache. And we can also disable prepare read.

And if you use SSD for storage you can enable Fastpath feature in LSI raid card to get better performance. Using PCIe like fusion-IO you can

enable NOOP to get better IO performance.

 www.vmcd.org

Set " innodb_flush_method= O_DIRECT”

Avoiding talking with OS cache, directly write file, and using Fsync() to flush dirty cache to disk.(flush including Inode cache,Buffer

cache,Directory cache)

 www.vmcd.org

 www.vmcd.org

Six : using huge page to get good performance

Applications that perform a lot of memory accesses (several GBs) may obtain performance improvements by using large pages due to reduced

Translation Lookaside Buffer (TLB) misses. HugeTLBfs is memory management feature offered in Linux kernel, which is valuable for applications

that use a large virtual address space. It is especially useful for database applications such as MySQL, Oracle and others. Other server software

that uses the prefork or similar (e.g. Apache web server) model will also benefit.

25% - 300% improvement: "These memory accesses are then frequently cache misses which introduces a high latency to the memory request. Increasing

page sizes from 4K to 16M significantly reduces this problem as the number of tlb misses drops. Typically it will reduce runtimes by 25-30% but in an

extreme case I've seen an SPH code run 3x faster simply by enabling large pages."

You can config by this article:

http://www.cyberciti.biz/tips/linux-hugetlbfs-and-mysql-performance.html

http://www.cyberciti.biz/tips/linux-hugetlbfs-and-mysql-performance.html

 www.vmcd.org

Seven : Running mysql on Numa architect system

 Today we also run multi mysql instance on numa architect system so nice design will be very important.

Mysql’s cpu utilization is always a problem (still not very good as oracle today) so when run mysql on multi core machine we can manual control

resource usage for multi instances to get better performance (we have two IBM x3950 machines , and each of them has 160 lcpu with

Hyper-threading enabled, so on this type machine only one mysql instance is too waste)

Not only mysql but also some other database even Nosql like mongodb , Numa architect still has variable problems when use. In oracle

database DBAs often be suggested to disable numa feature as oracle often just run one instance per machines and also for mongodb.

Running MongoDB on a system with Non-Uniform Access Memory (NUMA) can cause a number of operational problems, including slow performance for

periods of time or high system process usage.

When running MongoDB on NUMA hardware, you should disable NUMA for MongoDB and instead set an interleave memory policy.

Note MongoDB version 2.0 and greater checks these settings on start up when deployed on a Linux-based system, and prints a warning if the system is

NUMA-based.

To disable NUMA for MongoDB and set an interleave memory policy, use the numactl command and start mongod in the following manner:

numactl --interleave=all /usr/bin/local/mongod

Then, disable zone reclaim in the proc settings using the following command:

echo 0 > /proc/sys/vm/zone_reclaim_mode

 www.vmcd.org

See blew picture (percona test on mysql 5.1)

 www.vmcd.org

NUMA architect pic (for Intel NUMA)

 www.vmcd.org

General NUMA architect

 Allocate memory with a particular policy:

 * locally on the “current” node — using --localalloc, and also the default mode

 * preferably on a particular node, but elsewhere if necessary — using --preferred=node

 www.vmcd.org

 * always on a particular node or set of nodes — using --membind=nodes

 * interleaved, that is, spread evenly round-robin across all or a set of nodes — using --interleaved=all or --interleaved=nodes

Run the program on a particular node or set of nodes, in this case that means physical CPUs (--cpunodebind=nodes) or on a particular core or

set of cores (--physcpubind=cpus).

You see the default policy locally on the “current” node may cause “swap insanity”.

To avoid this problem (if only one instance we can disable NUMA) we should do some resource limitation

1. CPU and Memory

 Using numactl -cpubind=x –localalloc to bind instance to different CPUs

or using taskset:

OPTIONS

 -p, --pid

 operate on an existing PID and not launch a new task

 -c, --cpu-list

 specifiy a numerical list of processors instead of a bitmask.

 The list may contain multiple items, separated by comma, and

 ranges. For example, 0,5,7,9-11.

Eg : # taskset-pc 0,12,2,64 /*your mysql pid*/

 www.vmcd.org

2. IO

 We consider use IO resource management to manage IO usage by different Instance (In linux 6 often use cgroups to manage IO)

Eg:

group mysql_admin {

 cpuset {

 cpuset.cpus = "1,2,3,4,5,6,7,8";

 cpuset.mems="0";

 }

 memory {

 memory.limit_in_bytes=1086778;

 memory.memsw.limit_in_bytes=108657800;

 memory.swappiness=0;

 }

 blkio {

 blkio.throttle.read_iops_device = "5:0 1000";

 }

}

3. Network

 Using different IP address for different instance (per instance has it’s own bonding-IP address) so we need many NICs.

4. Network advance

 Even bind different network interrupt (network bottlenecks, Hardware interrupts) on different CPUs

 www.vmcd.org

 www.vmcd.org

Eight: IDC replication consideration

 In our system we have some remote IDC’s replication requirement (like from shanghai IDC to Beijing IDC) mysql M-S apply maybe delay

When meet some cases.

Some suggestion and solutions (we haven’t deployed all of them just plan)

1. Use private network connection (for using 1GB private network connection) and we can do some policies for mysql replications.

2. Use advanced network technologies like MPLS or “Intel DDIO DPDK” (I’m not confirm this as we not used so far) and CPU must support

DDIO

 www.vmcd.org

For more information:

http://dpdk.org/doc

http://www.intel.com/content/www/us/en/io/direct-data-i-o.html

3. Use a cascade architect (from china to USA) we create database in HK as middle database and rep from China->HK->USA even can add

Some policies you need.

http://dpdk.org/doc
http://dpdk.org/doc
http://www.intel.com/content/www/us/en/io/direct-data-i-o.html
http://www.intel.com/content/www/us/en/io/direct-data-i-o.html

 www.vmcd.org

Nine: Using Thread pool and HS

1. Thread pool was first introduced by Percona server (like Oracle multithreaded server using dispatcher to do some traffic control)

2. HS (HandlerSocket)

Visit http://yoshinorimatsunobu.blogspot.com/2010/10/using-mysql-as-nosql-story-for.html

Percona server and MariaDB have already integrated HS into their own version.

http://www.mysqlperformanceblog.com/2010/12/14/percona-server-now-both-sql-and-nosql/

https://mariadb.com/kb/en/handlersocket/

http://yoshinorimatsunobu.blogspot.com/2010/10/using-mysql-as-nosql-story-for.html
http://www.mysqlperformanceblog.com/2010/12/14/percona-server-now-both-sql-and-nosql/
https://mariadb.com/kb/en/handlersocket/

 www.vmcd.org

Ten: New idea for mysql Integration

 As you know in oracle database area HA architect is already mature we can use RAC to do some zero downtime work (like database upgrade

or business migration) and for Dataguard technology we can recover standby database in block level (just using block to recover standby

database, so with redo logfile and archivelog we can ensure no data loss)

 In mysql area we can’t use logfile to recover database directly so bin log seems very important for database recover. Recently we

communicated with WOQU and know their new idea for mysql integration:

http://www.woqutech.com/

 www.vmcd.org

They put bin log on shared disk to ensure slave can read most recently bin log (avoid some network problem leading lag between two

databases) but we still doubt whether InfiniBand network is the best choice in this situation.

To Be Continue . . .

