vmcd.org

NVMFS Benchmark

Introduction

Makes MySQL flash-aware and improves latency performance and consistency while increasing storage efficiency of Fusion ioMemory PCle
application accelerators

Replaces traditional double-write operation with single atomic write for lower, more consistent latency and reduced flash wear

New NVM Compression algorithm delivers benefits of compression without performance penalty

Tools: TPC-C, Warehouse numbers: 1000,storage: FusionlO SX300 1.6TB, OS: CentOS
6.5 kernel: 2.6.32-431.el6.x86_64

InnoDB buffer pool: 64G

sync_binlog =0

innodb_flush_log_at_trx_commit=2

10.0.15-MariaDB-log MariaDB Server(supports atomic writes)

File system: NVMFS ,ext4

warmup time: 120s

runtime: 3600s

Threads: 32 ~512

Machine: Dell R720 24core Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz

vmcd.org

How to install NVMFS

1

Login as root.

Disable auto_attach by issuing the following command:

modprobe iomemory-vsld auto attach=0

Detach the device if it is already attached:
fio-detach /dev/fctx

(where fctx isfctl or fct2, etc.)

Format the device with Fusion ioMemory SDK options enabled use

—A for atomic writes
—P for Persistent TRIM
—e for sparse address

fio-format -APye -b 512 /dev/fctx

Attach the device for I/O operations.
fio-attach /dev/fctx

This should result in device (fiox) appearing under /dev.

vmcd.org

Load the kernel module nvmfs.ko using the modprobe command as follows:
1
+ modprobe nvmfs

Verify that the kernel module has loaded properly using the Ismod command as follows:

s lsmod | grep nvmfs

#mount

/dev/sda2 on / type ext4 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw)

/dev/sdal on /boot type ext4 (rw)

/dev/sda4d on /home type ext4 (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
/dev/fioa on /storage/sas type NVMFS (rw,noatime)

vmcd.org

How to configure MariaDB

Partial write operations

When Innodb writes to the filesystem, there is generally no guarantee that a given write operation will be complete (not partial) in cases of a poweroff
event, or if the operating system crashes at the exact moment a write is being done.

Without detection or prevention of partial writes, the integrity of the database can be compromised after recovery.

innodb_doublewrite - an imperfect solution

Since its inception, Innodb has had a mechanism to detect and ignore partial writes via the InnoDB Doublewrite Buffer (also innodb_checksum can be
used to detect a partial write).

Doublewrites, controlled by the innodb_doublewrite system variable, comes with its own set of problems. Especially on SSD, writing each page twice
can have detrimental effects (write leveling).

Atomic write - a faster alternative to innodb_doublewrite

A better solution is to directly ask the filesystem to provide an atomic (all or nothing) write guarantee. Currently this is only available on the NVMFS
(previously called directFS) filesystem on FusionlO devices that provide atomic write functionality. This functionality is supported by MariaDB's XtraDB
and Innodb storage engines with MDEV-4338.

https://mariadb.com/kb/en/xtradbinnodb-doublewrite-buffer/
https://mariadb.com/kb/en/xtradbinnodb-server-system-variables/#innodb_doublewrite
https://mariadb.atlassian.net/browse/MDEV-4338

vmcd.org

Enabling Atomic Writes
To use atomic writes instead of the doublewrite buffer, add:

innodb_use_atomic_writes = 1

to the my.cnf config file.

About innodb_use atomic_writes

The following happens when innodb_use_atomic_writes is switched ON

e ifinnodb_flush method is neither O_DIRECT, ALL_O_DIRECT, or O_DIRECT_NO_FSYNC, itis switched to O_DIRECT

e innodb_use_fallocate is switched ON (files are extended using posix_fallocate rather than writing zeros behind the end of file)

¢ Whenever an Innodb datafile is opened, a special ioctl() is issued to switch on atomic writes. If the call fails, an error is logged and returned to the

caller. This means that if the system tablespace is not located on an atomic write capable device or filesystem, InnoDB/XtraDB will refuse to start.

e ifinnodb_doublewrite is setto ON, innodb_doublewrite will be switched OFF and a message written to the error log.

https://mariadb.com/kb/en/xtradbinnodb-server-system-variables/#innodb_flush_method
https://mariadb.com/kb/en/xtradbinnodb-server-system-variables/#innodb_use_fallocate
https://mariadb.com/kb/en/xtradbinnodb-server-system-variables/#innodb_doublewrite

vmcd.org

Benchmark Result

TpmC of all threads

NVMFS/Ext4/MariaDB 10.0.15 TpmC (1000DW)

FO000. 000

60000.0000 \
500000000 \

A DD

SILLLIRLLL

20000 0000

10000 00

0.D000
32 B4 128 256 512

—— NVMFS(100000W) —— Ext4{10000W)

vmcd.org

TPS of NVMFS

nvmfs/ext4 mariadb 10.0.15 TPS I+,

45000.0000

400000000

35000.0000

30000.0000

250000000

200000000

15000.0000

10000.0000

5000.0000

0.0000

6TT
LTT
SIT
ETT
TIT
60T
LOT
S0T
EOT
TOT
66
LE
S6
EB
16
68
LB
58
E8
T8

L

EL
¥
69
{9
59
E9
19
65
i5
o5
ES
TS
it
v
st
Eb
Tt

LE

EE
TE

[

EC
Tz

LT

ET
T

— Mo -~

{10000W)

mmis._512 ses|

{10000W)

mymfs_256_sess

[100000W)

memis_ 128 ses|

[100000W)

memfs_B4_ss2ss

{10000W)

rvmfs_32_sess

vmcd.org

TPS of Ext4

nvmfs/ext4 mariadb 10.0.15 TPS I+,

45000.0000

400000000

35000.0000

30000.0000

250000000

15000.0000

10000.0000

5000.0000

0.0000

6TT
LTT
SIT
ETT
TIT

{1000DW)

{1000DW) oxtd 512 sess

{1000DW) extd_256_sess

extd 128 sess

< 10000W)

extd B4 ses

<10000W)

extd_32_ses

vmcd.org

QPS of NVMFS

nvmfs/extd mariadb 10.0.15 QPS iz,

700000000

&0000.0000

50000.0000

A0000.0000

30000.0000

200000000

10000.0000

0.0000

44444

—— rvmfs_32_sess{10000W) —— s 64_sess{10000W) —— rvmfs 128 ses(10000W) ——rvmfs_256_sess{10000W) —— s 512_sess{10000W)

vmcd.org

QPS of Ext4

nvmfs/extd mariadb 10.0.15 QPS iz,

600000000

\
%7 Ly ‘ L/ .
30000.0000

20000.0000
10000.0000

0.0000
Mo~ oo om - = m ~ - m - = m - — m ~ — m - = m - — m - — m ~ = m -
b R S R I e ST T T = i [O a o n e ol

m.—if‘ﬁﬂ%g_-l
ﬂﬂﬂﬂﬂﬂﬂ o owom L == = == s s s B s |

—— =ctd_32_sess 1000DW) —— =t B4 sesq 1000DW) ——extd 128 sess(1000DW) — —extd 256 sess(1000DW) — ——extd 512 sess{1000DW)

vmcd.org

Benchmark by SanDisk

Lower, More Consistent Latency with NVMFS Atomic Writes

80
70
60
8 50
[
S
‘340
S 30
20
10 ARRECLSN o
0
M N~ MO MO NDD ST NOUODNDOD ST M NOO ST OO NN MOUNSNSNOD A MNWNnS
DO NDLONTMNANTONNVONDODNITTNAN—AOODNDINDONTNANNCO O
ANMNMITNONDNOAANNISTNONDNIOANMNNITINONNDNDO N M T
T A A A A A AN AN AN AN AN ANAN NN NN MOOOOOMHOOND DM
—XFS —— NVMFS Atomic Writes

Figure 1: XFS vs. NVMFS Atomic Writes (Sysbench - MariaDB 10.0.15, 4000 OLTP TXN injection/
second, 99% latency, 220 GB data - 10 GB buffer pool)*

vmcd.org

Compression Performance Comparison
NVMFS vs Legacy MySQL Compression

40000
€ 35000
_ﬂ
€ 30000
44
c 25000
o
= 20000
]
glmnn
Emunn
2 5000
0
=~ O M WO W 00 A g M~ MW O ey) g oM WD D
NSO I IR R NN AR mN
Time (Seconds

w— NVMFS uncompressed

—EXT4 legacy MySQL compression

Figure 2: NVMFS compression on MariaDB workload (TPC-C-like benchmark:
1000 warehouses - 75 GB MySQL Buffer pool, MariaDB 10.0.15)*

vmcd.org

In My test, MySQL has a better performance on ext4 filesystem which reaches about 5000 TpmC. | wonder if SanDisk really test ext4 filesystem on
Flash storage

Details of this Benchmark

Totally NVMFS has a great performance improvement — TPS +20% QPS +25% (and SanDisk’s Test shows NVMFS also has a better performance than XFS)

http://www.vmcd.org/docs/NVMFES INTRO.pdf
http://www.vmcd.org/docs/NVMFS User Guide.pdf
http://www.vmcd.org/docs/ext4.log

http://www.vmcd.org/docs/nvmfs.log

http://www.vmcd.org/docs/NVMFS_INTRO.pdf
http://www.vmcd.org/docs/NVMFS_1.1.1_User_Guide_for_MySQL_Atomics_and_NVM_Compression_2015-05-28.pdf
http://www.vmcd.org/docs/ext4.log
http://www.vmcd.org/docs/nvmfs.log

