
RZ 3769 (# 99779) 03/26/2010
Computer Science 20 pages

Research Report

Performance of the Greedy Garbage-Collection Scheme in Flash-
Based Solid-State Drives

Ilias Iliadis

IBM Research – Zurich
8803 Rüschlikon
Switzerland

Email: ili@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Performance of the Greedy Garbage-Collection Scheme

in Flash-Based Solid-State Drives

Ilias Iliadis

IBM Research – Zurich, 8803 Rüschlikon, Switzerland

Phone: +41-1-724-8646; Fax: +41-1-724-8952; e-mail: ili@zurich.ibm.com

Abstract

In flash-based solid-state drives (SSD) and log-structured file systems, new data
is written out-of-place, which over time exhausts the available free space. New
free space is created by the garbage-collection process, which reclaims the space
occupied by invalidated data. The write amplification, incurred because of the
additional write operations performed by the garbage-collection mechanism is
a critical factor that negatively affects the lifetime and endurance of SSDs. A
theoretical model is developed to evaluate the impact of the greedy garbage-
collection mechanism on the performance of large storage systems. The sys-
tem operation and behavior are comprehensively characterized for uniformly-
distributed random small user writes. Results of theoretical and practical im-
portance are analytically derived and confirmed by means of simulation. Closed-
form expressions are derived for both the number of relocated pages and the
write amplification. The write amplification is analytically assessed for the key
system parameters, i.e., the total system memory space, the proportion of the
memory space occupied by valid user data, and the block size in terms of num-
ber of pages. Our results demonstrate that as the system occupancy increases,
the write amplification increases. Furthermore, as the number of pages con-
tained in a block increases, the write amplification increases and approaches an
upper bound. They also show that the number of free pages reclaimed by the
greedy garbage-collection mechanism after each block recycling takes one of two
successive values, which provides a quasi-deterministic performance guarantee.

1. Introduction

A current trend in the data storage industry is the increasing adoption of
non-volatile NAND-flash memories, such as solid-state drives (SSD), that pro-
vide random I/O performance and access latency that are orders of magnitude
better than those of rotating hard-disk drives [1, 2]. Also, owing to their good
characteristics in terms of power consumption and shock resistance, these mem-
ories have been widely deployed in portable devices.

Data is read and written in a unit of one page, and erased in a unit of one
block, which contains several pages. Typically, a block contains 64 or 128 pages,

with the page size equal to 2 or 4 KB. SSDs require out-of-place writes, in that
new data does not overwrite the memory location where the data is currently
stored. Write-in-place is not used because it would require reading, erasing, and
rewriting of the entire corresponding block, which would lead to performance
and endurance degradation. As updated data is written in available free pages,
the pages storing old data are invalidated. As a result, the available free space
is gradually exhausted, which therefore over time renders the creation of new
free pages necessary for subsequent write operations. This task is performed by
the garbage-collection process, a process that is also required in log-structured
file systems, disks, and arrays [3, 4].

The garbage-collection mechanism first identifies blocks for cleaning based
on a given policy. Then valid data residing in these blocks is copied (relocated)
to other blocks, and finally the blocks are erased so that they become available
for rewriting. Consequently, this mechanism introduces additional read and
write operations, the extent of which depends on the specific policy deployed,
as well as on the system parameters. These additional writes result in the
multiplication of user writes, a phenomenon referred to as “write amplification”.
As the number of erase/write operations that can be performed before an SSD
wears out is limited, the extent of the write amplification is critical because it
negatively affects the lifetime and endurance of SSDs. Therefore, a garbage-
collection mechanism is efficient when it keeps the write amplification as low
as possible, and also achieves a good wear leveling in the sense of blocks being
worn out as evenly as possible. To achieve these goals, various garbage-collection
policies have been proposed in the literature, such as the “greedy” and “cost-
benefit” policies [3, 4]. In this report we consider the greedy policy, which
selects blocks with the smallest number of valid pages, such that it yields the
most amount of free space for reclaiming. Numerous simulation runs support
the claim that, under a random small write workload, this policy minimizes the
write amplification. To date, however, this remains a conjecture as it has not
yet been theoretically proved.

The key contributions of this work are the following. We develop a theo-
retical model to capture the operational characteristics of the greedy garbage-
collection scheme and assess its impact on the performance of large storage
systems. The usefulness of this model follows from the fact that, owing to the
state and memory explosion, neither Markov chain models nor simulators can
effectively be used to assess the performance of large flash-memory storage sys-
tems. We analytically derive closed-form expressions that relate the write am-
plification, along with other performance measures of interest, to the key system
parameters, i.e., the total system memory space, the proportion of the memory
space occupied by valid user data, and the block size in terms of number of pages.
Our results demonstrate that as the system occupancy, which is the ratio of the
number of pages containing valid user data to the total number of pages avail-
able in the system, increases, the write amplification increases. Furthermore,
as the number of pages contained in a block increases, the write amplification
increases and approaches an upper bound. The results obtained also reveal that
the number of free pages reclaimed by the greedy garbage-collection mechanism

2

after each block recycling takes one of two specific successive values that depend
on the system parameters. This result is of practical importance in time-critical
systems because it implies that a block erase triggered by the garbage collection
process may block a real-time task for an essentially fixed period of time, which
provides a quasi-deterministic performance guarantee. The analytical findings
of this work are also supported by simulation results, which shed additional
light on the behavior and effectiveness of the greedy garbage-collection policy.
They demonstrate that the greedy policy can be implemented in such a way
that blocks are evenly recycled, and therefore inherently provides a good degree
of wear leveling.

The remainder of the report is organized as follows. Section 2 provides
a survey of the relevant literature on the greedy garbage-collection scheme.
Section 3 presents the relevant system parameters, describes the operation of
the garbage-collection process, and demonstrates that the write amplification
depends only on the average number of relocated pages, which in turn depends
on the system occupancy. In Section 4, an analytical performance model of the
greedy garbage-collection policy is developed, and a closed-form expression for
the distribution of the number of relocated pages is derived. Section 5 presents
numerical results demonstrating the impact of the system parameters on the
write amplification. The analytical findings are also supported by simulation
results, which provide further insight into the behavior of the greedy garbage-
collection policy. Finally, we conclude in Section 6.

2. Related Work

Approximate analytical methods for deriving the write amplification corre-
sponding to the greedy garbage-collection policy have been presented in [5, 6, 7]
assuming uniformly-distributed random small user writes. For a system com-
prised of a large number of blocks and a large number of pages per block, it was
shown in [5] that the write amplification depends only on the system occupancy
or utilization, which is the ratio of the number of pages containing valid user
data to the total number of pages available in the system. More specifically,
an analytic expression for the system occupancy was derived as a function of
the write amplification, based on the assumption that the block selected by the
greedy policy always contains the same number of valid pages. Here we extend
this result by analytically deriving the write amplification as a function of both
the system occupancy and the number of pages per block. Furthermore, we
show that the blocks selected by the greedy policy do not always contain the
same number of valid pages, but that this number takes one of two specific
successive values that depend on the system parameters.

An approximate analytical method was developed in [6] for assessing the
write amplification for a windowed greedy policy, which includes the greedy
policy as a special case in which the window covers all blocks of the system.
This method allows the numerical evaluation of the write amplification for sys-
tems up to a certain size that depends on the amount of computational resources
available. It turns out that this method provides optimistic results, and that for

3

large values of the system occupancy, it significantly underestimates the write
amplification. An exact Markov chain model for the assessment of the write
amplification was presented in [7]. This model is useful to numerically obtain
the write amplification in small-sized systems. It cannot, however, be applied
in the case of large systems because of the state explosion of the underlying
Markov chain. By contrast, the analytical method presented here assesses the
write amplification in large storage systems. Furthermore, it offers the possi-
bility of gaining additional performance insight regarding several aspects of the
system operation. We also present simulation results that confirm the analytical
results obtained over the entire range of system occupancies. The simulation
method, however, has its own limitations; it, too, cannot be applied in the case
of very large systems because of the explosion of the corresponding memory re-
quired. The fact that neither Markov chain models nor simulators can be used
to assess the performance of large flash-memory storage systems, establishes the
usefulness of the theoretical model developed and presented by this work.

In flash-memory storage systems with real-time hard constraints, it is es-
sential to provide a deterministic performance guarantee [8]. As a block erase
triggered by the garbage-collection process may block a real-time task, it is
therefore desirable in time-critical systems to characterize the behavior of the
garbage-collection process employed. In [8] it is argued that it is crucial to
predict the number of free pages reclaimed after each block recycling so that
the system will never be blocked for an unpredictable length of time because of
garbage collection. Our results also address this issue in that they demonstrate
that, for uniformly-distributed random writes, the greedy garbage-collection
policy results in a quasi-deterministic number of free pages reclaimed after each
block recycling.

3. System Analysis

The notation used for the purpose of our analysis is given in Table 1. The
parameters are divided into two sets, namely, the set of independent and that of
dependent parameters, listed in the upper and lower part of the table, respec-
tively.

Each block contains c pages and the system is assumed to contain a total
of b blocks, denoted by b1, b2, . . . , bb. The number of pages N containing valid
user data is given by

N = u c , (1)

where u is the user storage capacity expressed in number of blocks. A proper
system operation requires that u ≤ b − ncl, where ncl is the number of blocks
kept in a clean state reserved for use by the garbage-collection process.

Let vi(t) denote the number of valid pages contained in block bi at time t.
Clearly, the sum of all valid pages over all blocks is always equal to the number
of pages containing valid user data, that is,

b
∑

i=1

vi(t) = N , ∀ t ∈ [0,∞) . (2)

4

Table 1: Notation of system parameters

Parameter Definition

b Total storage capacity in number of blocks
u User storage capacity in number of blocks
c Number of pages per block
ncl Number of clean blocks
bi ith block (1 ≤ i ≤ b)
vi(t) Number of valid pages contained in block bi at time t, (1 ≤ i ≤ b)

N Number of pages containing valid user data
ρ System occupancy (utilization)
ρi(t) Occupancy (utilization) of block bi at time t
A Write amplification
{Vi} Sequence of number of relocated pages, i = 1, 2, . . .
V Number of relocated pages in steady state
v∗ Normalized average number of relocated pages, or

mean occupancy (utilization) of garbage-collected blocks

The occupancy or utilization ρi(t) of block bi at time t is given by

ρi(t) ,
vi(t)

c
, ∀ t ∈ [0,∞) , (3)

the ratio of valid pages at time t to the total number of pages of block bi. From
(1), (2), and (3), it follows that

b
∑

i=1

ρi(t) =

b
∑

i=1

vi(t)

c
=

1

c

b
∑

i=1

vi(t) =
N

c
= u , ∀ t ∈ [0,∞) . (4)

The system occupancy or utilization ρ expresses the ratio of the number of
pages containing valid user data to the total number of pages available and is
given by

ρ ,
u

b
, (5)

the ratio of user storage capacity to total storage capacity. From (3) and (5), it
follows that

∑b

i=1
ρi(t)

b
=

u

b
= ρ , ∀ t ∈ [0,∞) , (6)

that is, at any time, the average block occupancy is, as expected, equal to the
system occupancy. The overprovisioning factor Of , which is the ratio of b to u,
is given by

Of ,
b

u
=

1

ρ
. (7)

5

3.1. The Garbage-Collection Process

The garbage-collection process requires that there is always a clean block
for page relocation, that is, ncl ≥ 1. It turns out that for large values of b, the
performance measures are practically insensitive to ncl [4]. For the purpose of
our analysis, it therefore suffices to consider ncl = 1, which implies that there is
at most one clean block, and that the page-writing and the garbage-collection
process are operating in a coordinated fashion. More specifically, every time,
say ti, a block is fully written, the garbage-collection process selects a block for
relocation denoted by bri

, and copies its Vi = vri
(ti) valid pages to the clean

block denoted by bci
. The greedy policy reclaims the most amount of free space

by selecting a block with the smallest number of valid pages, that is,

Vi = min
1≤j≤b

j 6=ci

vj(ti) . (8)

As, in general, there are multiple blocks containing Vi valid pages, blocks
should be selected in such a way that the wear across all blocks is even. One of
various ways to achieve a good degree of wear leveling is the following. Blocks
are maintained in a queue according to the order in which they are written. An
index is assigned to each position in the queue with the clean block having index
one, the oldest block having index two and the youngest block having index b.
Thus, this queue maintains the relative, not absolute, age of the blocks, with
the occupied blocks ordered accordingly in positions 2, 3, . . . , b. In particular,
the greedy garbage-collection policy selects the oldest of the blocks that have Vi

valid pages. Consequently, bri
is the block with the smallest block-age index that

has Vi valid pages. When the relocation of the Vi valid pages has completed,
bri

is recycled as a clean block after being erased, whereas bci
is no longer

clean. Thus, the number of clean blocks remains one. Also note that in the
subsequent time interval (ti, ti+1] the remaining c − Vi free pages of block bci

are written. From the preceeding, it follows that br1
, . . . , bri

, . . . denote the
sequence of successive blocks selected at times t1, . . . , ti, . . . by the garbage-
collection process for recycling, and that V1, . . . , Vi, . . . denote the corresponding
numbers of valid pages that are relocated on the respective clean blocks denoted
by bc1

, . . . , bci
,

3.2. Write Amplification

The write amplification A is defined as the average of the actual number of
(system) page writes per user page write, and is therefore given by

A = lim
i→∞

i
∑

k=1

c

i
∑

k=1

(c − Vk)

= lim
i→∞

c

c −
P

i
k=1

Vk

i

=
c

c − E(V)
=

c

c − V̄
, (9)

6

where V̄ denotes the average number of relocated pages. From (9), it follows
that

A =
1

1 − v∗
, (10)

where v∗ denotes the normalized average number of relocated pages, which is
equal to the mean occupancy of the blocks selected by the garbage-collection
process for relocation, given by

v∗ ,
V̄

c
, with 0 ≤ v∗ ≤ 1 . (11)

Thus, to assess the write amplification it suffices to derive the average num-
ber of relocated pages.

4. Analysis of Large Systems

We proceed to derive the average number of relocated pages V̄ as a function
of the system parameters for a random write workload, that is, for uniformly-
distributed random small user writes. From the definitions given in Table 1, it
follows that the probability that a small user write results in an update of a
given page is equal to 1/N . Let us now define by Kj(t) the number of blocks
containing j valid pages at time t. Then it holds that

c
∑

j=0

Kj(t) = b , ∀ t ∈ [0,∞) , (12)

and
c

∑

j=0

j Kj(t) = N = u c , ∀ t ∈ [0,∞) . (13)

Note also that the probability pj(t) that a randomly selected block at time t
contains j valid pages is given by

pj(t) =
Kj(t)

b
, for j = 0, 1, . . . , c . (14)

Let us now consider a typical interval (ti, ti+1] in which c − Vi user write
operations (page updates) are performed in block bci

(ti). Note that at the end
of this interval, the probability that bci

contains c valid pages is given by

P (vci
(ti+1) = c) =

(

1 −
Vi

N

) (

1 −
Vi + 1

N

)

· · ·

(

1 −
c − 1

N

)

≥
(

1 −
c

N

)c−Vi

≥

(

1 −
1

u

)c

. (15)

Consequently,

lim
u
c
→∞

P (vci
(ti) = c) ≥ lim

u
c
→∞

(

1 −
1

u

)c

= 1 , for i = 1, 2, . . . , . (16)

7

Therefore, for any given occupancy ρ,

lim
u
c
→∞

P (vci
(ti) = c) = 1 , for i = 1, 2, . . . , , (17)

which implies that as N (or b) increases, while keeping c fixed, the pages of
the newly written blocks are all valid. Clearly, on the one hand, owing to the
uniform distribution of the random page write requests, the probability that a
user write operation invalidates a given page is equal to 1/N , which for large
values of N tends to zero. But, on the other hand, a user write operation
invalidates a page of a block. However, the probability that a subsequent user
write operation in the interval considered also invalidates a page belonging to
the same block tends to zero. Therefore, the probability that two or more of the
c − Vi user write operations in the interval (ti, ti+1] invalidate pages belonging
to the same block tends to zero. This implies that for any block, the number
of valid pages may change within this interval by at most one. As the garbage-
collection process always selects a block with the smallest number of valid pages,
this process practically eliminates the possibility of having blocks with a small
number of valid pages. Consequently, there exists a number c∗, referred to as
critical number of pages, such that there are practically no blocks containing c∗

or fewer valid pages, that is

lim
t→∞
u
c
→∞

pj(t) = 0 , for j = 0, 1, . . . , c∗ , (18)

and
lim
t→∞
u
c
→∞

pj(t) > 0 , for j = c∗ + 1, . . . , c . (19)

Note also that at any time t, and owing to the uniform distribution of the
random page write requests, the probability hj(t) that a newly written page
invalidates a page located in a block containing j valid pages, referred to as
j-block, is given by

hj(t) =
j Kj(t)

N
, for j = 0, 1, . . . , c , ∀ t ∈ [0,∞) . (20)

Substituting (1) into (20), and using (5) and (14) yields

hj(t) =
j pj(t)

ρ c
, for j = 0, 1, . . . , c , ∀ t ∈ [0,∞) . (21)

In particular, for j = c∗ + 1, we get

hc∗+1(t) =
(c∗ + 1) pc∗+1(t)

ρ c
, ∀ t ∈ [0,∞) . (22)

From (19) and (22), it follows that hc∗+1(t) > 0, ∀ t ∈ [0,∞), which implies that
there will always be pages invalidated in blocks containing c∗ + 1 valid pages,
resulting in blocks containing c∗ valid pages after the invalidation. Thus, as

8

time progresses, blocks that contain c∗ valid pages will always appear. Their
number, however, will be negligible compared with the total number of blocks,
such that the probability pc∗(t) of randomly selecting one of them at time t will
be, according to (18), equal to zero. The garbage-collection process, by contrast,
will always select these blocks for relocation because they have the smallest
number of valid pages. Moreover, at times when there are no such blocks, there
will always be a block with c∗ + 1 valid pages selected for relocation, because,
according to (19), such blocks always exist. From the preceding, it follows that
in steady state, that is, for large values of t, a block selected for relocation will
always contain either c∗ or c∗ + 1 valid pages. Let V represent the number of
relocated pages in steady state, that is,

V , lim
i→∞

Vi . (23)

Also, let q (0 < q ≤ 1) denote the probability that the number of relo-
cated pages is equal to c∗. Then the distribution of V is a discrete bimodal
distribution, that is,

lim
i→∞

P (Vi = j) = P (V = j) =











q , j = c∗

1 − q , j = c∗ + 1

0 , otherwise .

(24)

Note that q > 0 because, as discussed above, blocks that contain c∗ valid
pages will always appear. Also, q can be equal to one in that for large i’s, at
all {ti} times there will be at least one block with c∗ valid pages. The number
of such blocks, however, will be negligible compared with the total number of
blocks, such that pc∗(ti) = 0 according to (18). From (24), it follows that the
average number V̄ of relocated pages is given by

V̄ = E(V) = c∗ + 1 − q . (25)

We now proceed to obtain the expected number E(Kj(ti+1)) of blocks con-
taining j (j > c∗) valid pages at time ti+1 conditioning on the number Kj(ti)
of blocks containing j valid pages at time ti and on the number Vi of relocated
pages. First, we note that the number of j-blocks may change by at most c−Vi

in the interval (ti, ti+1], that is

|Kj(t) − Kj(ti)| ≤ c − Vi , ∀ t ∈ [ti, ti+1] , (26)

with the equality holding if and only if either all page invalidations occur in j-
blocks, resulting in Kj(ti+1) = Kj(ti)− (c− Vi), or all page invalidations occur
in (j + 1)-blocks, resulting in Kj(ti+1) = Kj(ti) + (c− Vi). From (1), (20), and
(26), it follows that

|hj(t)−hj(ti)| ≤
j(c − Vi)

c u
≤

c − Vi

u
, for j = c∗+1, . . . , c , ∀ t ∈ [ti, ti+1] .

(27)

9

Thus, for large values of u/c it holds that

|hj(t) − hj(ti)| ≤ lim
u
c
→∞

c − Vi

u
= 0 , for j = c∗ + 1, . . . , c , ∀ t ∈ [ti, ti+1] ,

(28)
or

hj(t) = hj(ti) , for j = c∗ + 1, . . . , c , ∀ t ∈ [ti, ti+1] . (29)

As in the interval [ti, ti+1] each new page write invalidates a page of a j-block
with probability hj(t), the expected number of j-blocks that will be affected is
equal to (c − Vi)hj(t). Thus, the number of j-blocks is expected to be reduced
by (c − Vi)hj(t), which will result in an expected increase of the number of
(j − 1)-blocks. Similarly, the number of j-blocks is expected to increase by
(c − Vi)hj+1(t), owing to the expected reduction of the (j + 1)-blocks. Also,
the selection of block bri

, which contains Vi valid pages for relocation, by the
garbage-collection process will reduce the number of Vi-blocks by one. Further-
more, the relocation of the Vi valid pages in the clean block bci

, and given that,
according to (17), bci

contains c valid pages at time ti+1, results in an increase
of the number of c-blocks by one. Consequently,

E(Kj(ti+1)|Vi) =











Kj(ti) − (c − Vi)hj(ti) + (c − Vi)hj+1(ti) , Vi < j < c

Kj(ti) − (c − Vi)hj(ti) + (c − Vi)hj+1(ti) − 1 , j = Vi

Kj(ti) − (c − Vi)hj(ti) + 1 , j = c .

(30)
Unconditioning on Vi, after some manipulations, (24) yields

E(Kj(ti+1)|Kj(ti))

=

c−1
∑

n=0

E(Kj(ti+1)|Vi = n) P (Vi = n)

=

j−1
∑

n=0

E(Kj(ti+1)|Vi = n) P (Vi = n) + E(Kj(ti+1)|Vi = j) P (Vi = j)

+

c−1
∑

n=j+1

E(Kj(ti+1)|Vi = n) P (Vi = n)

=

{

Kj(ti) − [c − E(V)] [hj(ti) − hj+1(ti)] − P (Vi = j) , c∗ < j < c

Kj(ti) − [c − E(V)] hj(ti) + 1 , j = c .
(31)

Unconditioning on Kj(ti), (31) yields

E(Kj(ti+1))

=

{

E(Kj(ti)) − [c − E(V)] [hj(ti) − hj+1(ti)] − P (Vi = j) , c∗ < j < c

E(Kj(ti)) − [c − E(V)] hj(ti) + 1 , j = c .

(32)

10

Considering the system in steady state, that is i → ∞, and in turn t → ∞,
it holds that E(Kj(ti+1)) = E(Kj(ti)) = E(Kj). By suppressing ti and making
use of (18), (21), and (24), and given that E(V) < c, (32) yields



























hj = hj+1 , c∗ + 1 < j < c

hj = hj+1 +
1 − q

c − E(V)
, j = c∗ + 1

[c − E(V)] hj = 1 , j = c

hj = 0 , 0 ≤ j ≤ c∗ .

(33)

Solving (33) recursively for hj yields, by making use of (1) and (20)

lim
u
c
→∞

Kj

u
=



















c

j (c − V̄)
, c∗ + 1 < j ≤ c

q c

j (c − V̄)
, j = c∗ + 1

0 , 0 ≤ j ≤ c∗ .

(34)

Also, from (5), (11), (14), and (34), it follows that in steady state the prob-
ability pj that a randomly selected block contains j valid pages is given by

lim
u
c
→∞

pj =



















ρ

j (1 − v∗)
, c∗ + 1 < j ≤ c

q ρ

j (1 − v∗)
, j = c∗ + 1

0 , 0 ≤ j ≤ c∗ .

(35)

Substituting (34) into (12), and using (5) yields

c
∑

j=c∗+1

Kj

u
=

q c

(c∗ + 1) (c − V̄)
+

c
∑

j=c∗+2

c

j (c − V̄)
=

1

ρ
, (36)

or

ρ =
c − V̄

c

[

q

c∗ + 1
+ S(c∗ + 2, c)

] , (37)

where

S(n, c) ,

c
∑

j=n

1

j
. (38)

The probability q is given as a function of c∗ and the system parameters by
the following proposition.

Proposition 1. It holds that

q =
(c∗ + 1) [c − (c∗ + 1) − c ρ S(c∗ + 2, c)]

c ρ − (c∗ + 1)
, (39)

where S(n, c) is given by (38).

11

Proof: Immediate by substituting (25) into (37) and solving for q. �

For very low values of the occupancy ρ, and in particular for ρ ∈ (0, (1 −
2/b) c], such that N ≤ b − 2, there is always at least one block with zero valid
pages, and therefore Vi = 0 for i = 1, 2, . . ., and V̄ = 0. In fact, according to
(25), V̄ = 0 if and only if c∗ = 0 and q = 1. Substituting these values into (37),
and using (38), we deduce that

V̄ = 0 , and therefore c∗ = 0 , for ρ ∈ [0, ρ0] , (40)

where

ρ0 =
1

S(1, c)
. (41)

In particular, for ρ ∈ ((1− 2/b) c, ρ0], there are instances i1, i2, . . . for which
Vi > 0 for i = i1, i2, Nevertheless, these instances are rare, and as a result
V̄ = 0. Further increasing the occupancy ρ causes c∗ to increase in steps. Let
ρ1, . . . , ρm, . . . denote the various occupancy points at which c∗ increases. More
specifically, for ρ → ρ−m it holds that c∗ = m − 1, q → 0, and by virtue of
(35), pm → 0, whereas for ρ = ρm it holds that c∗ = m, q = 1, and pm = 0.
Consequently, the values {ρm} are obtained from (37) by considering c∗ = m,
q = 1, and, according to (25), V̄ = m, as follows:

ρm =
c − m

c S(m + 1, c)
, for m = 1, 2, (42)

The critical number of pages c∗ is now given as a function of c and ρ by the
following theorem.

Theorem 1. It holds that

c∗ = m , for ρ ∈ [ρm, ρm+1) , m = 0, 1, . . . , c − 2 , (43)

with ρm given by

ρm =
c − m

c S(m + 1, c)
, for m = 0, 1, (44)

Proof: From the preceding, combining (41) and (42), and given that ρc−1 =
1, yields (43)– (44). �

Corollary 1. For a given ρ, as c increases, the normalized critical number of
pages c∗/c increases and approaches c∗

∞
, which satisfies the following relation:

ρ =
1 − c∗

∞

log

(

1

c∗
∞

) , ∀ ρ ∈ [0, 1) , (45)

where

c∗
∞

, lim
c→∞

c∗

c
. (46)

12

Proof: From (43), it follows that c∗/c corresponds to m/c. Let us define the
variable x = m/c, and replace the variable m in (42) with x c. Then ρ is given
as a function of x by

ρ(x) = lim
c→∞

c − x c

c S(x c + 1, c)
= lim

c→∞

1 − x

S(x c + 1, c)
, ∀x ∈ [0, 1] . (47)

By recalling that for large values of c and n it holds that

S(n, c) =

c
∑

j=n

1

j
= log

(

c

n − 1

)

, (48)

(47) yields

ρ(x) =
1 − x

log

(

1

x

) , ∀x ∈ [0, 1] . (49)

�

The normalized average number of relocated pages v∗ is now readily obtained
by the following theorem.

Theorem 2. It holds that

v∗ =







0 , for ρ ≤ ρ0

(c∗ + 1) {[1 + S(c∗ + 2, c)] ρ − 1}

c ρ − (c∗ + 1)
, for ρ > ρ0 .

(50)

Proof: For ρ ≤ ρ0, according to (40), V̄ = 0. For ρ > ρ0, c∗ is obtained from
(43) by identifying the interval [ρc∗ , ρc∗+1) in which ρ lies. Substituting (39)
into (25), and using (11) yields (50). �

Corollary 2. For a given ρ, as c increases, the normalized average number of
relocated pages v∗ increases and approaches v∗

∞
, which satisfies the following

relation

ρ =
1 − v∗

∞

log

(

1

v∗
∞

) , ∀ ρ ∈ [0, 1) . (51)

where
v∗
∞

, lim
c→∞

v∗ . (52)

Proof: From (11) and (25), it follows that

v∗ =
V̄

c
=

c∗ + 1 − q

c
, (53)

which implies that

v∗
∞

= lim
c→∞

v∗ = lim
c→∞

c∗ + 1 − q

c
= lim

c→∞

c∗

c
= c∗

∞
. (54)

13

2

5000

10000

0
5

10
15
0

0.5

1

Block Age Index
Number of Valid Pages

P
df

 o
f N

um
be

r
of

 V
al

id
 P

ag
es

Figure 1: Distribution of the number of valid pages as a function of the block age index for
c = 16, b = 10, 000, and ρ = 0.8.

Combining (45) and (54) yields (51). �

The relation between v∗
∞

and ρ given by (51) is in agreement with the one
derived in [5].

5. Numerical Results

Here we study the performance of the greedy garbage-collection scheme and
assess its impact on the write amplification. To confirm the theoretical results
derived, we also developed a simulation model. Simulations were run until the
measures of interest were observed to stabilize, indicating that the steady state
had been reached. To accelerate the convergence of these measures, measure-
ments taken during an initial warm-up phase were discarded. All simulation
runs indicated that the the greedy policy resulted in a good degree of wear lev-
eling as blocks were evenly erased and recycled, which implies that there was
an even wear across all blocks.

We proceed by considering a system with c = 16, b = 10, 000, and ρ = 0.8.
Figure 1 shows the distribution of the number of valid pages as a function
of the block age index, as defined in Section 3.1, which indicates the order
according to which blocks were written. Note that the block with an age index
of b = 10, 000, corresponds to the most recently written block which, according
to (17), contains c = 16 valid pages. This results in a spike with its height equal
to one for a block age index equal to 10,000 and a number of 16 valid pages.
As blocks age, and their block age index reduces, the corresponding number of
valid pages also reduces. Figure 1 also shows that there are practically no blocks

14

2 2000 4000 6000 8000 10000
10

11

12

13

14

15

16

Block Age Index

M
ea

n
N

um
be

r
of

 V
al

id
 P

ag
es

Figure 2: Mean number of valid pages as a function of the block age index for c = 16,
b = 10, 000, and ρ = 0.8.

with 9 or fewer valid pages, which confirms the validity of Eqs. (18) and (19)
with the critical number of pages being equal to c∗ = 9. From (42), it follows
that ρ9 = 0.79 < ρ < 0.83 = ρ10, which, according to (43), implies that c∗ = 9.
Consequently, the analytical value of c∗ is in agreement with the simulation.
Figure 2 shows the mean number of valid pages as a function of the block age
index. As previously mentioned, a block with an age index equal to b = 10, 000
contains c = 16 valid pages. As blocks age, and their corresponding block age
index reduces, their mean number of valid pages also reduces. However, those
blocks with a relatively larger number of valid pages are not selected by the
garbage-collection process, and therefore they become the oldest, that is, their
block age index becomes small. This is illustrated in Figure 2 where for blocks
with small values of age index, the corresponding mean number of valid pages
is relatively large.

Figure 3 shows the distribution of the number of valid pages over all blocks
at the times when garbage collection takes place, which also represents the
steady-state probability pj that a randomly selected block contains j valid pages.
The square symbols correspond to the analytical results for infinitely large b,
obtained by using (35), and are in good agreement with the simulation results
(indicated by the circles), confirming the fact that there are practically no blocks
containing c∗ = 9 or fewer valid pages.

The distribution of the number of relocated pages, V , is plotted in Figure
4. The square symbols correspond to the analytical results derived by using
(24) with c∗ = 9 (given that ρ9 = 0.79 < ρ = 0.8 < ρ10 = 0.83) and q = 0.77
as obtained by (39). These results are in good agreement with the simulation
results (indicated by the circles) confirming that 77% of the garbage-collected
blocks contain c∗ = 9 valid pages and the remaining 23% of the garbage-collected

15

0 5 10 15
0

0.05

0.1

0.15

0.2

Number of Valid Pages (j)

 p
j

analysis
simulation

Figure 3: Distribution pj of the number valid pages over all blocks (analysis + simulation)
for c = 16, b = 10, 000, and ρ = 0.8.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Number of Relocated Pages (V)

D
is

tr
ib

ut
io

n
 o

f
V

analysis
simulation

Figure 4: Distribution of V (analysis + simulation) for c = 16, b = 10, 000, and ρ = 0.8.

blocks contain c∗ + 1 = 10 valid pages.
We proceed by presenting analytical results for the various measures and for

the entire range of ρ. Figure 5 plots the normalized critical number of pages,
c∗/c, as a function of the system occupancy ρ and the number of pages per
block c using (43). Note that c∗ increases as ρ increases. It also increases, as c
increases, and approaches a continuous curve given by (45).

The normalized average number of relocated pages, v∗, is plotted in Figure
6 as a function of the system occupancy ρ for various values of c using (50). As
expected, v∗ increases as ρ increases. Interestingly, the curves are continuous,

16

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Occupancy (ρ)

c* /c

c=4
c=8
c=16
c=32
c=64
c=512

Figure 5: Normalized critical number of pages c∗/c as a function of ρ for c = 4, 8, 16, 32, 64,
and 512.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Occupancy (ρ)

 v
*

c=4
c=8
c=16
c=32
c=64
c=512

Figure 6: Normalized average number of relocated pages v∗ as a function of ρ for c =
4, 8, 16, 32, 64, and 512.

but not smooth. The discontinuities occur precisely at the {ρm} occupancy
points at which c∗ increases by one. Note that as c increases, v∗ approaches a
continuous smooth curve given by (51).

To verify the analytical results, we also ran simulations with b = 1000. The
simulation results, indicated by the circles in Figure 7, reveal that for all values

17

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Occupancy (ρ)

 v
*

c=4
c=8
c=16
c=32
c=64
c=512

Figure 7: Normalized average number of relocated pages v∗ (analysis + simulation with
b = 1000) as a function of ρ for c = 4, 8, 16, 32, 64, and 512.

of occupancy and all numbers of pages considered, the analytical results are in
excellent agreement with the simulated ones. Interestingly, they also agree for
values for which the condition u ≫ c no longer holds. For example, for c = 512
and ρ = 0.4, we get c∗ = 54, V̄ = 54.36, but it holds that u = 400 < 512 = c. In
this case, however, the simulation results revealed that the number of relocated
pages V is no longer either 54 or 55, but it can also be 53 or 56, such that
V̄ = 54.36. Consequently, the condition u ≫ c is necessary and sufficient for
the distribution of V to be bimodal, but this condition is not necessary for the
results regarding V̄ and v∗ to be accurate.

The write amplification A is subsequently obtained by making use of (10),
and plotted in Figure 8 as a function of the system occupancy ρ for various
values of c. Interestingly, for small values of c, A increases almost linearly in
the [ρm, ρm+1] intervals. As can be seen from Figures 7 and 8, the average
number of relocated pages, and therefore the write amplification, is less for
smaller values of c. This is because operating with small blocks increases the
likelihood that the garbage-collection process finds blocks for recycling that
do not contain any valid pages. For instance, for c = 1, and for any system
occupancy ρ, there always exist such blocks, such that the write amplification is
equal to zero. However, there is a tradeoff between small and large block sizes.
On the one hand, small values of c reduce both the write amplification and the
blocking time due to an erase operation, but result on the other hand in an
increased rate of block erasures, which in turn affects the performance of the
device. Conversely, large values of c on the one hand reduce the rate of block
erasures, and therefore improve the performance of the device, but on the other
hand increase the write amplification and the blocking time due to an erase

18

0 0.2 0.4 0.6 0.8 1
1

2

4

6

8

10

Occupancy (ρ)

W
rit

e
A

m
pl

ifi
ca

tio
n

c=4
c=8
c=16
c=32
c=64
c=512

Figure 8: Write amplification A as a function of ρ for c = 4, 8, 16, 32, 64, and 512.

operation. A reasonable compromise is achieved by typically selecting c = 64.
Thus, today’s SSDs are comprised of blocks containing 64 pages of 4 KB each.

6. Conclusions

Today’s data storage systems are increasingly adopting flash-based solid-
state drives (SSD), in which, similarly to the log-structured file systems, new
data is written out-of-place. The space occupied by the invalidated data is
reclaimed by the garbage-collection process, which involves additional write op-
erations that result in write amplification. The effect of the greedy garbage-
collection scheme on the write amplification was assessed analytically for large
flash-memory systems. Closed-form expressions were derived for the number of
relocated pages and the write amplification.

Our theoretical results demonstrate that as the number of pages contained
in a block increases, the write amplification increases and approaches an up-
per bound. Also, as the system occupancy increases, the write amplification
increases. We find that the number of free pages reclaimed by the greedy
garbage-collection mechanism after each block recycling takes one of two succes-
sive values, which provides a quasi-deterministic performance guarantee. Our
simulation results confirm the analytical findings. They also show that the
greedy garbage-collection mechanism inherently provides a good degree of wear
leveling.

19

References

[1] J. Brewer, M. Gill, (ed.), Nonvolatile Memory Technologies with Empha-
sis on Flash: A Comprehensive Guide to Understanding and Using Flash
Memory Devices, Wiley-IEEE Press, 2008.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, R. Pan-
igrahy, Design tradeoffs for SSD performance, in: Proceedings of the 6th
USENIX Annual Technical Conference (ATC) (Boston, MA), 2008, pp. 57–
70.

[3] M. Rosenblum, J. K. Ousterhout, The design and implementation of a log-
structured file system, ACM Trans. Comput. Syst. 10 (1) (1992) 26–52.

[4] J. Menon, L. Stockmeyer, An age-threshold algorithm for garbage collec-
tion in log-structured arrays and file systems, High Performance Computing
Systems and Applications (1998) 119–132.

[5] J. Menon, A performance comparison of RAID-5 and log-structured arrays,
in: Proceedings of the 4th International Symposium on High Performance
Distributed Computing (HPDC) (Charlottesville, VA), 1995, pp. 167–178.

[6] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, R. Pletka, Write amplifica-
tion analysis in flash-based solid state drives, in: Proceedings of the Israeli
Experimental Systems Conference (SYSTOR) (Haifa, Israel), 2009, pp. 1–9.

[7] W. Bux, Performance evaluation of the write operation in flash-based solid-
state drives, IBM Research Report, RZ 3757, IBM (Nov. 2009).

[8] L.-P. Chang, T.-W. Kuo, S.-W. Lo, Real-time garbage collection for flash-
memory storage systems of real-time embedded systems, IEEE Trans. Em-
bed. Comput. Syst. 3 (4) (2004) 837–863.

20

